

Written by Matt Bromiley

September 2019

Sponsored by: Fidelis Cybersecurity

Executive Summary

Oftentimes the most crucial insight into any environment comes from the endpoints—the systems that are being interactively used or providing services to the environment. Given the wealth of artifacts that can be collected from endpoints, they are excellent resources for providing a comprehensive view into the activities of users and active attackers.

In this paper—the second in a two-part series—we continue our examination of the Fidelis Elevate¹ platform, with a specific focus on the endpoint portion: Fidelis Endpoint. While technically part of, and accessible from the CommandPost interface, Fidelis Endpoint provides a unique platform for monitoring endpoints, tracking behaviors and threat hunting, to name only a few of its many capabilities. As we examine the overall Fidelis Elevate platform, you can expect to see mentions of how the technologies discussed in the first part of this two-part series²—including deception—can be incorporated into Endpoint analysis.

² "Elevating Enterprise Security with Fidelis Cybersecurity: Network and Deception, September 2019, www.sans.org/reading-room/whitepapers/analyst/elevating-enterprise-security-fidelis-cybersecurity-network-deception-39145

¹ Fidelis Elevate[™] and Fidelis Endpoint[®] are trademarks of Fidelis Cybersecurity[®].

Fidelis Endpoint provides a wide range of impressive features that add to the strength of the Elevate platform. Some of our favorite features, which we believe are designed to make analysts' lives easier, include:

- Behavioral monitoring, which captures *endpoint activities from end to end*, simplifying triage and investigation activity
- Quick *links to post-analysis analyst activities*, such as indicator tracking or enterprise scanning
- Built-in threat hunting capabilities, including *real-time* and *historical* data searches and tasking
- Threat intelligence and scanning capabilities to *easily integrate third-party data* into your organization
- A solid inventory of the devices, applications and key vulnerabilities in the organization

While this second paper focuses specifically on Fidelis Endpoint, our overarching goal for a platform such as Fidelis Elevate does not change: **We want organizations to strive for holistic visibility.** This concept means treating the entire organization as one functional unit, just as threat actors do. Network- and host-based artifacts are *naturally intertwined*, and analysis should be performed the same way. Security teams should launch a reactive investigation or initiate a proactive threat hunt **from the same platform**.

As you read this paper, we encourage you to assess whether your security team can gather the same metrics or perform the same analytics that we did with Fidelis Endpoint. Furthermore, keep in mind that at any point we can revert to the CommandPost interface and add more context to investigations and alerts. The focus of this series is **holistic visibility**—we hope you can achieve the same analytics, hunting and detections *across your own enterprise*. If not, it may be time to start working toward it!

Automated Endpoint Data Collection

We begin our assessment of Fidelis Endpoint where analysts would begin their typical day: within the initial dashboard. One thing we look for when assessing an initial, post-login screen is how easily the dashboard presents relevant data. After all, the seconds or minutes analysts spend tracking down information needed to perform their job duties can significantly slow down their security team over time. As shown in Figure 1 on the next page, Fidelis Endpoint serves up alert details first, providing high-level insight into the type of alert, the endpoints in question, the source and other key details.

In this initial dashboard, analysts can quickly pivot and address critical alerts without significant digging. Another feature we enjoyed when using the Fidelis Endpoint user interface—consistent with the unified CommandPost interface—is a robust, customizable search feature. Typing into the search bar allows for a simple text-based search.

However, as shown in Figure 2, analysts also have the option of modifying their search by focusing on a variety of variables, including endpoint, severity details, artifact name or intelassociated. While the concept of searching may seem trivial for an analysis platform, making key fields accessible

Alerts							08/02/19	D4:21 UTC cloud-u	user 🛩 📔 🕄
Search									
Last 30 D	ays 🗸 Time: July 3, 201	9 04:21:20 - August	2, 2019 04:21:20					List Group By	🗠 Charts 🚽
» Alert	trend for all data								~
Group B	. •				۸				alert St
200								Immary	
100									
			<u> </u>				_ , , , ,		
	Mama	08	Same	15	Intel Name	22 Sauasitu	Alast Data	29	
	RiteAdmin Detection	DESKTOP.OP12K5	Behavior Dules	C:\Windowe\Svetem32\cmd	BiteAdmin Detection	High	07/24/19.03:01:16	07/24/19 03:59:40	×
	BitsAdmin Detection	DESKTOP-OP12K5	Behavior Rules	C:\Windows\System32\cmd.	BitsAdmin Detection	High	07/24/19 02:01:32	07/24/19 02:05:40	
	BitsAdmin Detection	DESKTOP-QP12K5I	Behavior Rules	C:\Windows\System32\cmd	BitsAdmin Detection	High	07/24/19 01:45:57	07/24/19 02:02:40	
	BitsAdmin Detection	DESKTOP-QP12K5I	Behavior Rules	C:\Windows\System32\cmd	BitsAdmin Detection	High	07/24/19 01:58:37	07/24/19 02:02:40	
	Vulnerable Software Installed .	DESKTOP-QP12K5I	Installed Software CVE			Critical	07/20/19 23:59:59	07/22/19 00:02:01	
	Vulnerable Software - CVE-20	. DESKTOP-QP12K5I	Installed Software CVE		CVE-2019-5839	Medium	07/20/19 22:17:00	07/20/19 22:17:00	
	Vulnerable Software - CVE-20	DESKTOP-QP12K5I	Installed Software CVE		CVE-2019-5840	Medium	07/20/19 22:17:00	07/20/19 22:17:00	
	Vulperable Software - CVE-20	DESKTOD OD12K5	Installed Software CVE		CVE-2010-5925	Madium	07/20/10 22:17:00	07/20/10 22:17:00	

allows for adaptable analysis and prevents analysts from needing to memorize complex search parameters to drill down into activities of interest.

During our examination of Fidelis Endpoint, we spent most of our time analyzing two types of alerts: targeted behavioral activity and automated "environmental metadata" collections. Let's address behavioral monitoring first.

Targeted Behavioral Monitoring

Behavioral monitoring is one of our favorite features in Fidelis Endpoint because it provides the data necessary to *raise the confidence and accuracy* with which analysts can triage alerts. While our testing yielded fewer than 300 alerts total, large enterprises could potentially throw hundreds or thousands of alerts per minute. At that volume, security teams don't have time to manually run down the details from each alert. In such instances, behavioral monitoring is the first step in cutting down response times. In keeping with our theme of *holistic visibility*, behavioral analysis provides analysts with endpoint-specific visibility across multiple, correlated artifacts.

Behavioral monitoring works because *malware and threat actors do not exist in a solitary, technical bubble.* The infection or compromise of a system typically leaves traces of network activity and footprints all over the host. Modern malware is often network-dependent, requiring external access to download code or send a beacon back

home. Threat actors have to find a way to get to a host, which also leaves unique traces on those systems.

Behavioral monitoring takes many of these dependencies into account, monitoring endpoints to watch for correlated process details, modifications to the disk and the operating system, and keying in on user activities. Correlated activity, as opposed to single-indicator triggering (such as an MD5 hash or strings in a binary), provides higher fidelity on severity scores and alert tracking. While the concept of searching may seem trivial for any analysis platform, making key fields accessible allows for adaptable analysis and prevents analysts from needing to memorize complex search parameters to drill down into activities of interest.

Figure 1. High-Level Insight into Alerts

> Text Search Name Endpoint Source Intel Name Severity Alert Date Received Date Has Job Artifact Name

Figure 2. Search Customization Options In Fidelis Endpoint, behaviors are accessible either directly from the Alert console (assuming an alert was triggered) or the Behaviors tab. By accessing the Behaviors tab directly, shown in Figure 3, we can see the overall behavior tracking for the environment, not just suspicious or malicious detections. (We

Correlated activity, as opposed to single indicator triggering, provides higher fidelity on severity scores and alert tracking.

return to the Behaviors tab when we discuss threat hunting in the section "Executable and Script Code Analysis" later in this paper.)

Navigating back to the Alert console, analysts who want to drill down on any available alert are only a single click away from high-level alert details. Figure 4 shows

Investigati	on / Behaviors									08/02/19 04:	21 UTC clo	oud-user 🗙 🕴
Process	✓ ▼ Search											8
Last 30 Da	ys V Time: July 3, 2019 04:21:49 - August 2, 2019 04:21:49				ced Query Builder							
	Time	C Endpoint	User	PID	Name	PPID	Parent Name	Path	Command-li	Signature	MD5	SHA1
d 🐐 i	7/26/2019 19:04:31.871	DESKTOP-QP12K5I	DESKTOP-QP12K5I\Br	5716	taskhostw.exe	1224	svchost.exe	C:\Windows\	taskhostw.exe	Signed	88e39572	70588b44
I 🗣 I	7/26/2019 19:04:29.948	DESKTOP-QP12K5I	NT AUTHORITY\SYST	1276	svchost.exe	648	services.exe	C:\Windows\	C:\Windows\	Signed	08617267	c02ec813_
I 🐐 I	7/26/2019 19:04:29.861	DESKTOP-QP12K5I	DESKTOP-QP12K5I\Br	6880	taskhostw.exe	1224	svchost.exe	C:\Windows\	taskhostw.exe	Signed	88e39572	70588b44
I 🗣 I	7/26/2019 19:04:26.155	WIN-BKT7EDCGHVB	WIN-BKT7EDCGHVB\	2648	mobsync.exe	616	svchost.exe	C:\Windows\	C:\Windows\	Unsigned	509e88ff	fa3ad1d3
I 🐐 I	7/26/2019 18:56:02.592	DESKTOP-QP12K5I	NT AUTHORITY\SYST	5620	upfc.exe	648	services.exe	C:\Windows\	C:\Windows\	Signed	4ceed46d	2a3bfed9
I 🔷 I	7/26/2019 18:55:14.614	DESKTOP-QP12K5I	NT AUTHORITY\SYST	7552	GoogleUpdate.exe	1224	svchost.exe	C:\Program	"C:\Program	Signed	b8265ab6	c6353d13
I 💊 I	7/26/2019 18:45:59.578	WIN-BKT7EDCGHVB	WIN-BKT7EDCGHVB\	1996	mobsync.exe	616	svchost.exe	C:\Windows\	C:\Windows\	Unsigned	509e88ff	fa3ad1d3
I 💊 I	7/26/2019 18:43:44.833	WIN-BKT7EDCGHVB	WIN-BKT7EDCGHVB\	356	mobsync.exe	616	svchost.exe	C:\Windows\	C:\Windows\	Unsigned	509e88ff	fa3ad1d3
I 🐐 I	7/26/2019 18:43:40.413	DESKTOP-QP12K5I	DESKTOP-QP12K5I\Br	944	taskhostw.exe	1224	svchost.exe	C:\Windows\	taskhostw.exe	Signed	88e39572	70588b44
I 🔹 I	7/26/2019 18:43:21.839	WIN-BKT7EDCGHVB	WIN-BKT7EDCGHVB\	2288	mobsync.exe	616	svchost.exe	C:\Windows\	C:\Windows\	Unsigned	509e88ff	fa3ad1d3
I 🔷 🖬	7/26/2019 18:35:38.602	DESKTOP-QP12K5I	DESKTOP-QP12K5I\Br	5584	taskhostw.exe	1224	svchost.exe	C:\Windows\	taskhostw.exe	Signed	88e39572	70588b44
I 🔹 I	7/26/2019 18:35:36.696	DESKTOP-QP12K5I	NT AUTHORITY\SYST	252	svchost.exe	648	services.exe	C:\Windows\	C:\Windows\	Signed	08617267	c02ec813_
e 🐐 i	7/26/2019 18:35:36.572	DESKTOP-QP12K5I	DESKTOP-QP12K5I\Br	4576	taskhostw.exe	1224	svchost.exe	C:\Windows\	taskhostw.exe	Signed	88e39572	70588b44
I 🔌 I	7/26/2019 18:35:34.216	WIN-BKT7EDCGHVB	WIN-BKT7EDCGHVB\	1280	mobsync.exe	616	svchost.exe	C:\Windows\	C:\Windows\	Unsigned	509e88ff	fa3ad1d3
I 🗣 I	7/26/2019 18:18:55.889	WIN-BKT7EDCGHVB	WIN-BKT7EDCGHVB\	872	mobsync.exe	616	svchost.exe	C:\Windows\	C:\Windows\	Unsigned	509e88ff	fa3ad1d3
I 🗣 I	7/26/2019 18:15:52.004	DESKTOP-QP12K5I	NT AUTHORITY\SYST	6544	SearchFilterHost.exe	6076	SearchIndexer.exe	C:\Windows\	"C:\Windows	Signed	10be7c30	cbdf62bc
I 🐐 I	7/26/2019 18:15:51.965	DESKTOP-QP12K5I	NT AUTHORITY\SYST	1296	SearchProtocolHost.e	6076	SearchIndexer.exe	C:\Windows\	"C:\Windows	Signed	65289375	b8d6293b

a summary of one of the high-severity alerts Fidelis Endpoint detected during our testing.

Also with a single click, analysts can drill down into the specific behavior activity. Clicking the View Behavior link allowed us to get into the granular details of what triggered this potential alert. This is where we believe Fidelis Endpoint truly shines as a comprehensive analysis platform. As shown in Figure 5, there is a ton of data for analysts to dig through, *all presented in a single analysis screen*.

Figure 3. Behavior Tracking Across the Environment

Figure 4. Details of a High-Severity Alert

Figure 5. Granular View of Alert Triggers

or written to, network connections, registry modifications and **EXE/DLL** details, and presents them in the same screen (see Figure 5). Furthermore, where appropriate,

Fidelis Endpoint tracks multiple data points, including process trees, files created

Fidelis builds in various visualizations to provide additional context, such as a chronological sequence of events or a graphical representation of parent/child process relationships.

It's worth noting that not only does Fidelis Endpoint present a fantastic amount of data with this alert, but nearly all the data points in these analysis screens are interactive. The chronological timeline, as shown in Figure 6, provides single-click insight into each sequence, with links to additional details where appropriate.

t 1 5 5 🖺 Time 7/24/2019 01:58:51.251 2 🖺 Name mimikatz.exe Ľ Path C:\Users\Bruce Wayne\Downloads\mimikatz_trunk\x64\mimikatz.exe Version 2.2.0.0 2 User DESKTOP-QP12K5I\Bruce Wayne Ľ τ 2 ss Start 01:59 02:00 02:01

By examining the tabs at the bottom of each behavior, we were able to switch between various data points to identify what activity took place and triggered an alert. Selecting the Child Processes tab from within Alert data, for example, allows for a succinct view

Figure 6. Interactive Insight into Sequences

into related processes. (See Figure 7.) This tab also provides "traditional" file details, such as the full path and various hashes.

Alerts	Parent	Process Tree	Child Processes	Remote Thr	reads	EXE/DLL	Files Created	Files Written	Registry Writes	Network Connection	ons Threat Lookup 0		
	Time	¢	User	PID	Name		Path				Child Process Start 🍳 🗶		
7/25/2019 08:37:15.539 DESKTOP-QP12K5I\Bruc				8176	mimikat	z.exe	C:\Users\Bruce	Wayne\Downloads\r	mimikatz_trunk\x64\mir	Action and are started this shild present			
7/24/2019 02:01:32.386 DESKTOP-QP12K5I\Bruc 69			6900	conhost	.exe	C:\Windows\System32\conhost.exe				Name mimikatz.exe			
							Command-line mimikatz.exe						
											Start Time 7/25/2019 08:37:15.539		
											User DESKTOP-QP12K5I\Bruce Wayne		
											PID 8176		

We can view a graphical representation of the same data by clicking the Process Tree tab, shown in Figure 8.

Fidelis Endpoint provides details such as parent/ child relationships, network connectivity, and mimikatz.exe O mimikatz.exe O cmd.exe O conhost.exe

Figure 8. Graphical View of Related Processes

Figure 7. Concise View of Related Processes

registry and file interaction up front and makes them easily accessible. As previously mentioned, the more correlated data that analysts have access to, and the *greater the ease with which they can obtain that data*, the faster they can do triage and investigation or resolution. However, these data points are sometimes considered to be the norm for detection and response. We appreciate that Fidelis Endpoint consolidated multiple data points into a single screen.

But Fidelis Endpoint doesn't stop there. Fidelis has clearly considered what analysts must do *after* they resolve alerts. Many of the data fields have drop-down menus that enable analysts to pivot from a file, behavior or finding directly into scanning, alerting or tasking (see

Actions	esses	Remote Th	reads	EXE/DLL
🗨 Behavior Details		PID	Name	
🕸 Add Hash to Process Blocking	2K5I\Bruc	. 8176	mimikatz.exe conhost.exe	
💉 Create Yara Rule	2K5I\Bruc	. 6900		
🕑 Start Task From Behavior				

Figure 9). Behavioral monitoring provides not only a unique, holistic investigation point of view, but also the ability to craft richer, multistep detections.

Figure 9. Drop-Down Menus for Data Fields

From the same console where we performed alert triage on a suspected credentialharvesting tool, Fidelis Endpoint offered a one-stop jump to:

- Implementation of a hash-based process block
- Creation of a Yara rule
- Start of a task from the particular observed behavior

These are some of the best features organizations can ask for in a security platform. These tools essentially allow analysts to go from one alert to the entire environment (a massive zoom out), depending on the severity of the confirmed activity. For example,

if a particular executable is confirmed malicious, there may be a business justification to prevent further execution *anywhere else in the environment*. Process blocks can also be implemented via Yara rules, allowing for more flexibility and robust signatures. Attackers can easily change a hash, but other indicators or executable metadata are harder to reset.

If an executable is confirmed malicious, there may be a business justification to prevent further execution anywhere else in the environment.

Another feature worth mentioning, and accessible from the Alert and Behavior analysis screens, is the direct download of an offending executable or script, as shown in Figure 10.

This helpful screen once again is a display of bringing data pertinent to analysis directly to the analysts, so they don't waste time digging for it.

Automated Collection

Another useful feature that Fidelis Endpoint offers is the automatic collection of executables and scripts at runtime. This provides organizations with a two-fold advantage:

- If an attacker tries to delete a file, the analyst team still has access to the raw data for subsequent analysis.
- Upon acquisition of the data, Fidelis Endpoint is able to inspect and provide various metadata elements about a particular sample. Analysts can, in turn, use these metadata points to craft additional detections or searches throughout the environment.

We're always a fan of features that take away threat actors' anti-forensic capabilities, especially because these threat actors continue to develop techniques to hide and mask their binaries from the operating system.

Executable File S	Summary
Path Wayne\Downloads\mi	C:\Users\Bruce mikatz_trunk\x64\mimikatz.exe 📥 🗸
MD5	736c963c78ed5b4587f36ca6f70dfbcb 🕸
SHA1	cb58316a65f7fe954adf864b678c694fadceb759 🕸
SHA256	
b4f9beb47cc56ab08 db 🔅	c571560df4496d3cc4656209597968a4c2e9b105ba475
Size	1006744
File Version	2.2.0.0
Signed	Signed
Signed Date	18:36 5/12/2019

Figure 10. Direct Download of an Executable

Switching from Reactive to Proactive

Thus far, we've examined a significant number of Fidelis Endpoint features from a *reactive* perspective, meaning an organization is responding to and handling alerts and investigations. However, as an organization's security program matures with a platform such as Fidelis Elevate, security teams can shift into a *proactive* stance, where they have the time and capabilities to *discover the threats they weren't aware of.* Fortunately, this is all possible in the same platform.

Executable and Script Code Analysis

In the Investigation tab of the main dashboard, analysts have access to more data than the Behaviors detail described previously. Fidelis Endpoint captures additional metadata simply by running and observing host activity. See Figure 11.

One key option, and perhaps a light introduction to some suspicious executable hunting, is provided in Executables. This feature provides insight into the various executables and scripts, such as PowerShell, detected in the environment, as well as related metadata. See Figure 12.

As mentioned earlier, Fidelis Endpoint captures executables and scripts and makes them readily available for download. Furthermore, each executable offers a direct link to behavioral activity, in the event that analysts want to drill down for additional information.

	Date First Reported	File Name First Reported	Туре	Size	Endpoint First Reported	Path First Reported	MD5	SHA1	SHA256
. : 🖸	07/24/19 04:00:14	fodhelper.exe	Executable	45.0 kB	DESKTOP-QP12K5I	C:\Windows\System32\fodhelper.exe	1d1f9e564472a9698f1be3f9feb9864b	84c1de94e002de58009973f5dd1624_	b52fbb99308493a27aac725cf70721
	07/24/19 04:00:12	ngentask.exe	Executable	82.6 kB	DESKTOP-QP12K5I	C:\Windows\Microsoft.NET\Framework64\v4.0.30319\ng_	aa98e294a0210bda5f79a7288f91b78c	86dd2a5845c2ef0960a704b71a4926	36576db25877fa5ecbf8e1c91d640a
	07/24/19 04:00:11	ngentask.exe	Executable	83.1 kB	DESKTOP-QP12K5I	C:\Windows\Microsoft.NET\Framework\v4.0.30319\ngent_	ed7f195f7121781cc3d380942765b57d	aee93c4d84c2035c2fb20e45506722	ca003ecd9a6caae17824816d1d8691
	07/24/19 04:00:08	mcbuilder.exe	Executable	89.0 kB	DESKTOP-QP12K5I	C:\Windows\System32\mcbuilder.exe	01d97c92988f1e231c51a11922c75c6a	d99cb75764194b56c180cbeb50ee5f	6d91cfbdb5363bd3370ca3244a6f62
	07/24/19 04:00:06	4ed1b7d4e99db4c711322406	Script	9.5 kB	DESKTOP-QP12K5I	4ed1b7d4e99db4c71132240652391e38a8824e3c	9b010d27c4fe60e19341d872426797_	4ed1b7d4e99db4c71132240652391e	4ebee677269f15eaa37b6dd47e22c2
	07/24/19 04:00:05	414df3742beff253b4f898b407_	Script	23.4 kB	DESKTOP-QP12K5I	414df3742beff253b4f898b40751ce2a2faf6656	b98ecc31e0b0419f9cfdc29f10287708	414df3742beff253b4f898b40751ce2	20a87180de77648b3a04cab37e24e
	07/24/19 04:00:03	GoogleUpdate.exe	Executable	151.3 kB	DESKTOP-QP12K5I	C:\Program Files (x86)\Google\Update\GoogleUpdate.exe	b8265ab60d731fa7a1705f829a64ca32	c6353d1350e416fd64e5cefab0c0264	3435cdd3d1975191ea2542f9b2a1fb
	07/24/19 03:59:59	sdiagnhost.exe	Executable	24.5 kB	DESKTOP-QP12K5I	C:\Windows\System32\sdiagnhost.exe	22e56a1a980252b8880ed1a12561f0	b969cfd894a554ed1721eabcc0854d	165968286bd97d87e360e006cc0car
	07/24/19 03:59:58	Ipremove.exe	Executable	42.0 kB	DESKTOP-QP12K5I	C:\Windows\System32\lpremove.exe	2db5526a2abc04bf2dfb02d404ddf5a9	e0e40154866db67db4a29898f61584_	9a20da8a4585f795cc8199501e1517
	07/24/19 03:59:56	VSSVC.exe	Executable	1.5 MB	DESKTOP-QP12K5I	C:\Windows\System32\VSSVC.exe	c7053d974a35eab81f153ff33c883613	07d46e46e2180693a045d784043e82	9d89dc644971f93931d0e59d42ade0
	07/24/19 03:59:42	cleanmgr.exe	Executable	214.5 kB	DESKTOP-QP12K5I	C:\Windows\System32\cleanmgr.exe	062ec57fe7f4463161d9e6ef400b2a3e	2eb39003998f0e518ad937db120b87_	aa5016a3f28f312e00679bfb9a6b66e
	07/24/19 03:59:39	tzsync.exe	Executable	61.0 kB	DESKTOP-QP12K5I	C:\Windows\System32\tzsync.exe	1c46a81ea1ea413a4fbde1fdbf71becc	bb97061b5256add7a6cc924feff090d	9bef963b0030921f70c3ddf46eff6e3
	07/24/19 03:59:32	FaceFodUninstaller.exe	Executable	427.0 kB	DESKTOP-QP12K5I	C:\Windows\System32\WinBioPlugIns\FaceFodUninstalle	9c30acd6aa83bde68329941d37e3b4	210830a72ebef693fc5e4b85af1f49b	9e370fedbdcbd4645683566bd48dba
	07/24/19 03:59:29	sc.exe	Executable	67.5 kB	DESKTOP-QP12K5I	C:\Windows\System32\sc.exe	d79784553a9410d15e04766aaab77c	72785e3068aa52ca223da466595d38	aeb241959f4a7b7c29f45d27fd65c5;
	07/24/19 03:59:28	MpCmdRun.exe	Executable	446.8 kB	DESKTOP-QP12K5I	C:\Program Files\Windows Defender\MpCmdRun.exe	9f2c791ed4801f09ca2d56d265cd4bc5	c3864f7c57c2cf8e9be5d4401c36e74	f9186a3236918316a453da67d6798
	07/24/19 03:59:25	dstokenclean.exe	Executable	12.5 kB	DESKTOP-QP12K5I	C:\Windows\System32\dstokenclean.exe	9746f6f8866ce90c5186d69ec2a1d0b8	b7f90cb9c4ff3d19252dd085e6ae2fa	45b6afcd58c1d27f3f09b68f86c68d8
	07/24/19 03:59:23	DiskSnapshot.exe	Executable	89.0 kB	DESKTOP-QP12K5I	C:\Windows\System32\DiskSnapshot.exe	dcdfa656550edf320fe9a127739ea645	50e59c18cd4493e2f15ba7a944e139	01e0d4ffe6f18299b0f33065dcc4009
	07/24/19 03:59:21	Defrag.exe	Executable	181.5 kB	DESKTOP-QP12K5I	C:\Windows\System32\Defrag.exe	f52552d225c325a08de585a188b7ff6b	20103c9e3f0b40ae402446e286d13e	14bd3078ad7f3aab8feb6fa157de11c
	07/24/19 03:59:19	SpeechModelDownload.exe	Executable	165.0 kB	DESKTOP-QP12K5I	C:\Windows\System32\Speech_OneCore\common\Speec	08f71705ca28ba0a5d15e2019a26e9a3	3/9e7783/4821cffc1/0/601361ea2b6f.	b1fa6cc2f1f1563d9f1e048ea0bcaa2
	07/24/19 03:59:17	AdobeARM.exe	Executable	1.1 MB	DESKTOP-QP12K5I	C:\Program Files (x86)\Common Files\Adobe\ARM\1.0\A	50b17d217f07d5968b34f42311638f74	de0c092e9e157288c661f3471301fc5	9ad7c8083743312c9742f5844f6eff3
	07/24/19 03:59:14	dasHost.exe	Executable	92.0 kB	DESKTOP-QP12K5I	C:\Windows\System32\dasHost.exe	fd83c3389817c5246fe544eee63e4115	4bd17fc26eSa1d2db411553002483c	8d6881e9bfba065692e7b8de209902
	07/24/19 03:59:06	SearchFilterHost.exe	Executable	111.0 kB	WIN-BKT7EDCGHVB	C:\Windows\System32\SearchFilterHost.exe	52d56d1013d4f1b99102679314cc53	904a3b130e3db7cea97f31cc40d64d	f8f6c41fec774c71a85c91dfeb05707
	07/24/19 03:59:04	SearchProtocolHost.exe	Executable	244.0 kB	WIN-BKT7EDCGHVB	C:\Windows\System32\SearchProtocolHost.exe	42ec9065d9bf266ade924b066c783a56	a8dcf7d63a8bb5abef8787775957a5b.	4ac002e90a52cb0998da78f2995294
	07/24/19 03:59:01	mobsync.exe	Executable	100.0 kB	WIN-BKT7EDCGHVB	C:\Windows\System32\mobsync.exe	509e88ff7b257885775791faf0965d6a	fa3ad1d38856416077d53c0bebe26e	fecd6785984dbb61c6c0ea8a3d8daf
	07/24/19 03:58:26	WinSAT.exe	Executable	2.7 MB	DESKTOP-QP12K5I	C:\Windows\System32\WinSAT.exe	7e222296267cb43d95ba8c376d937d	bc9abebbc326b9d1fb81e2fc9bc783b	8b2163756295f0f17e242a4d2a962c
	07/04/10 03-50-00	SeTaska ava	Executable	65 5 40	DESKTOP-OP12K5	C1Windows) System 22) SrTaske ava	742-404-54250-771-47-157-6	8470F24-8-44085F-8811704014-2	2-659640-049462344614745-0-2-

The ability to pivot

through script data allows for greater insight into the environment. PowerShell has become a staple in modern attacker toolkits and is something that all defenders should be watching for. PowerShell presents a unique problem, however, as it's also a favorite of system administrators! Having Fidelis Elevate's insight into executable/script collection and code analysis can help your analysts identify what's approved versus malicious in the environment. Figure 12. Detected Executables and Metadata

Software Inventory

Another inventory-related tab provided by Fidelis Endpoint includes an inclusive list of installed software, depicted in Figure 13.

٣		×									
	Name	Publisher	Version	Highest CVE Score	CVE Count	Endpoint Count	Last Install Date				
٦	Adobe Acrobat Reader DC MUI	Adobe Systems Incorporated	19.012.20035	10 - Critical	79	1	07/20/19				
۲	Google Chrome	Google LLC	67.174.32910	9.3 - Critical	194	1	07/20/19				
۲	VLC media player	VideoLAN	3.0.7.1	7.5 - High	3	1					
	MobaXterm	Mobatek	11.1.0.3860	6.8 - Medium	1	1	07/20/19				
◄	bzip2		1.0.6-8.1ubuntu0.2	5.1 - Medium	7	2	07/12/19				
	bash		4.4.18-2ubuntu1.2	4.6 - Medium	1	1	07/12/19				
۲	bash		4.4.18-2ubuntu1.1	4.6 - Medium	1	1	06/17/19				
۲	accountsservice		0.6.45-1ubuntu1	1.9 - Low	1	2	06/17/19				

Figure 13. Inventory of Installed Software

Analyst Program 上

ښ		
	Behaviors	
	Executables	
	Installed Software	
	File Quarantine	
	Tag Search	
	Reports	

Figure 11. Investigation Tab Features Software inventory is not a new concept and is quite commonplace among endpoint platforms. However, as we've seen with other data points, Fidelis takes it a step further with Fidelis Endpoint. You may have noticed in Figure 1, shown earlier, a series of alerts categorized as *Installed Software CVE*. This feature ties directly to the *Installed Software tab* and is a really neat feature in Fidelis Endpoint.

Not only does Fidelis Endpoint keep track of software versions of various endpoints, but it performs lookups and comparisons to determine whether you are running any vulnerable software on those systems. Fidelis Endpoint categorizes and ranks common vulnerabilities and exposures (CVEs) accordingly, with vulnerabilities making their way into the Alerts tab so security teams can act on them. Furthermore, Fidelis Endpoint can also integrate with Active Directory, allowing you to bring these data points together with AD enrichment.

This might seem like a trivial data point, but many threat actor entry vectors, exploits and persistence mechanisms are based on outdated/unpatched software. This is often a key pain point for many organizations: out-of-date software details are hard to identify. Fidelis Endpoint helps solve this problem by allowing analysts to handle alerts and vulnerabilities within the same screen—remember, **we want holistic visibility!**

Constructing Tasks

Let's be frank about one thing: Looking at executable metadata or known vulnerabilities would hardly classify as efficient approaches to hunting through an environment. To gain unique, granular insight into key artifacts in the environment, we switched over

to Tasks, another of our favorite features in Fidelis Endpoint and the Fidelis Elevate platform.

Figure 14 shows the initial Tasks screen, which contains a list of the various jobs and data points we can request from our environment. Whether we are chasing an adversary in incident response mode, or seeking to establish

, ,						
	Name	Туре	Platform	Tags	Description	Created Date
	Administrators	Script	Windows 32 Windows 64	User, Accounts, Administrator, System Management	Lists all users with Administrator rights. Use the optional parameter to filt	05/10/19 16:08:19
	Agent Log	Script	Windows 32 Windows 64	System Management, Agent, Log	Returns log entries from the Fidelis Agent.	05/10/19 16:08:19
	All User Accounts	Script	Windows 32 Windows 64	Investigation, Volatile, Users, Accounts	Displays information about any created users on an endpoint. Use the Opt	05/10/19 16:08:20
	All User Accounts (WMI)	Script	Windows 32 Windows 64	User, Accounts, System Management	Lists all the user accounts. Use the optional parameter to filter the results	05/10/19 16:08:20
	AntiVirus Information	Script	Windows 32 Windows 64	AntiVirus, System Management	Shows the AntiVirus and AntiSpyware products installed on client comput	05/10/19 16:08:20
	ARP Cache	Script	Windows 32 Windows 64	Investigation, Volatile, Network	Displays information from the Address Resolution Protocol Cache. Use th.,	05/10/19 16:08:20
	Autoruns	Script	Windows 32 Windows 64	Autorun, Startup, System Management, Investigation	Returns all windows Autoruns. Use the optional parameter to filter the res	05/10/19 16:08:20
	Certificates	Script	Windows 32 Windows 64	Certificates	Lists all the certificates. Use the optional parameter to filter the results to t	05/10/19 16:08:20
	Computer Uptime	Script	Windows 32 Windows 64	System Management, Uptime	Returns the time in minutes it has been since the computer started	05/10/19 16:08:20
	Configure Agent	Script	Windows 32 Windows 64	System Management, Configuration, Deployment	Allows you to set various configuration options for the Fidelis Agent.	05/10/19 16:08:20
	Configure Agent Proxy	Script	Windows 32 Windows 64	System Management, Configuration, Deployment	Allows you to set proxy configuration options for the Endpoint Agent servi	05/10/19 16:08:20
	CPU Load	Script	Windows 32 Windows 64	CPU, Performance	Returns the CPU load percentage. Use the filter to specify a minimum retu	05/10/19 16:08:20
	CPU Usage Per Process	Script	Windows 32 Windows 64	Process, CPU, Performance	Returns the CPU usage for each process currently running. Use the filter t	05/10/19 16:08:20
	Create Local User Account	Script	Windows 32 Windows 64	Users, Accounts, System Management	Creates a local user account.	05/10/19 16:08:20
	Current File-sharing Sessions	Script	Windows 32 Windows 64	Network, Sessions, Investigation, Volatile	Displays information about the current inbound remote sessions connecte	05/10/19 16:08:44
-	Delete Registry Value	Script	Windows 32 Windows 64	Registry, Registry Value	Deletes the specified registry value. WARNING: This may break the target $_$	05/10/19 16:08:20
	Disk Image (Cancel/Throttle)	Script	Windows 32 Windows 64	Disk Acquisition, Disk Image, Data, Investigation	Cancel or Throttle a currently running disk imaging task. 0 means to canc	05/10/19 18:20:0
•	Disk Image (Filestore)	Script	Windows 32 Windows 64	Disk Acquisition, Disk Image, Data, Investigation	Creates an image of an endpoint's disks or volumes and stores it on Endp	05/10/19 18:20:08
	Disk Image (Windows File Share)	Script	Windows 32 Windows 64	Disk Acquisition, Disk Image, Data, Investigation	Creates an image of an endpoint's disks or volumes and stores it at the sp	05/10/19 16:08:4*
	Disk Space	Script	Windows 32 Windows 64	System Management, Hardware, Disk	Lists all the hard drives with respective size and free space. Use the para	05/10/19 16:08:20
	Disk Volumes	Script	Windows 32 Windows 64	Investigation, Volatile	Displays the information about the volumes mounted on the endpoint. $\ensuremath{Us_{}}$	05/10/19 16:08:2*
	DNS Cache	Script	Windows 32 Windows 64	Investigation, Volatile	Displays the data from the DNS cache on the endpoint. Use the Optional Q	05/10/19 16:08:2*
	Drivers	Script	Windows 32 Windows 64	Investigation, Volatile	Displays information about the drivers on the endpoint. Cerberus Stage 0	05/10/19 16:08:2"
	File Collection	Script	Windows 32 Windows 64	File System, Data, Investigation	Search the filesystem returning the metadata of the files that matched the	05/10/19 16:08:25
	File Copy	Script	Windows 32 Windows 64	File System, Data, Investigation	Copy a file from one location on the Endpoint to another. File must exist at	05/10/19 16:08:25
	File Delete	Script	Windows 32 Windows 64	Data, File System, Incident Response, Remediation	Delete a file or folder at the specified path.	05/10/19 16:08:29

proactive threat hunting, data packages exist that allow for either to be easily executed. Note that this list is not comprehensive; our test instance included 98 built-in packages, with an easy option to create additional packages in the administration panel.

The various tasks Fidelis Endpoint offers enable organizations to comfortably walk the line between reactive and proactive investigations. For example, let's say an organization wants to conduct a hunt by digging through **prefetch** files. In simple terms, these files offer evidence of execution on Microsoft Windows systems and are often used to identify the current or previous execution of a file on a system. Figure 14. Job and Data Points that Can Be Requested

Constructing a task that reaches out and pulls Windows **prefetch** files is so easy in Fidelis Endpoint that we almost wondered whether we forgot to include a particular field. In fact, the scripts that power the various tasks are quite complex, but much of this can be abstracted away from the analyst, if the organization chooses. Initiating a pull of **prefetch** data in the environment simply involves setting priorities, naming the

job and selecting a target host set, as shown in Figure 15.

Once initiated, the tasks we launched ran quickly and pulled back data almost immediately.

Previous		Target Selection					
Groups 🕞 🕻	3	🖋 Agent Installed = True 🕱		×			
▼ Search] Endpoint Name	$\hat{\boldsymbol{\varphi}}$	IP Address	Operating System		
Group		DESKTOP-QP12K5I		172.16.100.128	Microsoft Windows 10 Professional x64 Edition		
~ All	C] WIN-BKT7EDCGHVB		172.16.100.178	Microsoft Windows 7 x64 Edition Service Pac		
Windows Desktops (2)							

However, Fidelis Endpoint was just getting started.

When data started to return to the Fidelis Endpoint console, it automatically rendered in a columnar format that is *adaptive to the artifact being interrogated*. As shown in Figure 16, the **prefetch** data is displayed and parsed according to the relevant **prefetch** data points, such as creation time and reported file size.

If we change up our task and instead pull back **DNS** caches from all systems, notice that the columnar rendering changes, based on the requested data type. See Figure 17 on the next page.

In Task analysis, Fidelis Endpoint has built a truly adaptive data return dashboard, providing for artifact-specific analysis. For many organizations, this feature is a game changer. We often see endpoint monitoring platforms that can pull back various artifacts, but they are delivered as raw data that analysts must subsequently parse and/or make sense out of. Fidelis, once again looking to save analysts time and make holistic security possible, automatically parses returned data and provides it in a searchable, easy-toconsume format.

As we mentioned previously, Fidelis Endpoint includes dozens of tasks. Furthermore, most tasks are crossplatform where appropriate, allowing

Analyst Program

	Endpoint	File Name	Creation Time	Reported File Size
:	DESKTOP-QP12K5I 📎	UNSECAPP.EXE-72B9DDB3.pf	2019-07-24T01:55:00.978898	3931
÷	DESKTOP-QP12K5I 📎	FEP_CONSOLE.EXE-28100973.pf	2019-07-24T01:54:58.561897	9642
£	DESKTOP-QP12K5I 📎	PROTECT.EXE-5213992F.pf	2019-07-24T01:54:48.913895	17515
÷	DESKTOP-QP12K5I 📎	DISMHOST.EXE-B53E4677.pf	2019-07-24T01:49:47.408326	6491
:	DESKTOP-QP12K5I 📎	USOCLIENT.EXE-4ADC110B.pf	2019-07-24T01:49:45.799054	3681
÷	DESKTOP-QP12K5I 📎	NETSH.EXE-8174DA63.pf	2019-07-20T22:21:11.031857	9521
÷	DESKTOP-QP12K5I 📎	FIDDLERSETUP.EXE-710A367A.pf	2019-07-20T22:21:11.008856	9873
1	DESKTOP-QP12K5I 🦠	FIDDLERSETUP.EXE-4A647097.pf	2019-07-20T22:21:11.006356	21140
÷	DESKTOP-QP12K5I 📎	SETUPHELPER-BFF8ECCB.pf	2019-07-20T22:21:10.960856	7209
÷	DESKTOP-QP12K5I 📎	GIMP-2.10.12-SETUP.EXE-753E228C.pf	2019-07-20T22:19:52.400196	5984
÷	DESKTOP-QP12K5I 📎	GIMP-2.10.12-SETUP.TMP-802F8FE8.pf	2019-07-20T22:19:43.861357	34033
1	DESKTOP-QP12K5I 📎	MAINTENANCESERVICE_INSTALLER6BEC36FF.pf	2019-07-20T22:15:11.319905	11830
1	DESKTOP-QP12K5I 📎	MAINTENANCESERVICE_TMP.EXE-6A746806.pf	2019-07-20T22:15:11.288694	3922
1	DESKTOP-QP12K5I 📎	SETUP.EXE-3A96EE15.pf	2019-07-20T22:15:10.351202	30109
1	DESKTOP-QP12K5I 📎	THUNDERBIRD SETUP 60.8.0.EXE-1C4E5D8E.pf	2019-07-20T22:15:08.460665	19746
÷	DESKTOP-QP12K5I 📎	PIDGIN-2.13.0-OFFLINE.EXE-734FE682.pf	2019-07-20T22:14:49.796402	25056
ŧ,	DESKTOP-QP12K5I 📎	HEXCHAT 2.14.1 X64.EXE-18041913.pf	2019-07-20T22:14:31.785635	6425
1	DESKTOP-QP12K5I 📎	HEXCHAT 2.14.1 X64.TMP-7202B95C.pf	2019-07-20T22:14:31.785635	38868
1	DESKTOP-QP12K5I 📎	WINPCAPINSTALL.EXE-04E99DDA.pf	2019-07-20T22:14:15.895455	11676
1	DESKTOP-QP12K5I 📎	AUTOHOTKEY.EXE-9290C316.pf	2019-07-20T22:14:15.864207	6149
ŧ,	DESKTOP-QP12K5I 📎	AUTOHOTKEY.EXE-5A35085F.pf	2019-07-20T22:14:13.551771	7684
1	DESKTOP-QP12K5I 📎	REG.EXE-A93A1343.pf	2019-07-20T22:13:41.274183	2140
ł,	DESKTOP-QP12K5I 📎	PRUNSRV-AMD64.EXE-2611112A.pf	2019-07-20T22:07:21.550739	32017
:	DESKTOP-QP12K5I 📎	JAVA.EXE-6791F41A.pf	2019-07-20T22:07:20.268816	8945
1	DESKTOP-QP12K5I 📎	CODE.EXE-12F1BED5.pf	2019-07-20T22:07:19.839728	37401

analysts to consider hunting and investigative activities from an environmental perspective, instead of an OS-based approach. Deep-dive tasks are also available, allowing analysts to pull and triage a full memory image from a system, if they need to go to that depth.

Figure 16. Relevant **prefetch** Data Points

Figure 15. Pulling prefetch

Files

	Endpoint	٢	Name	Time to Live	Section	Record Type	Data Size	Host Name	IP	Matches
1	DESKTOP-QP12K5I		desktop-qp12k5i.mshome.net	86400	Answer	А	4		192.168.233.113	0
÷	DESKTOP-QP12K5I		1.0.0.127.in-addr.arpa	86400	Answer	PTR	4	view-localhost		0
3	DESKTOP-QP12K5I		checkin-5026278.fideliscloud.com	4	Answer	А	4		54.158.15.170	1
÷	DESKTOP-QP12K5I		113.233.168.192.in-addr.arpa	86400	Answer	PTR	4	DESKTOP-QP12K5I.mshome.net		0
4	DESKTOP-QP12K5I		view-localhost	86400	Answer	А	4		127.0.0.1	0
÷	WIN-BKT7EDCGHVB		checkin-5026278.fideliscloud.com	4	Answer	A	4		54.158.15.170	1

Reaching Higher: Extending Fidelis Endpoint

While we found numerous areas in Fidelis Endpoint that we truly enjoyed and believe can improve the security capabilities of many organizations, one of our favorite takeaways is keeping the overall environment in mind. While we were looking at data points collected from endpoints in our test environment, at any point we could easily have zoomed out to CommandPost and viewed related network activity. The correlation of host- and network-based activity only strengthens the confidence with which one can analyze alerts, on top of the already ultrarich behavioral reporting.

THREAT INTELLIGENCE
Behavior Rules
Intelligence Feeds
Intelligence Feed Indicators
Process Blocking Rules
Scanning Indicator Library

Another way for security teams to level up their defensive capabilities is via signatures that can also easily be ingested into Fidelis Endpoint. If your organization wants to extend Fidelis Elevate's capabilities, both CommandPost and Endpoint allow for integration of third-party sources. As shown in Figure 18, Fidelis Elevate allows for simple integration of threat intelligence feeds, in addition to the built-in feeds that Fidelis itself already overlays on the data. In the first paper in this series, we pointed out Fidelis Elevate's capability of deploying deception technology to detect additional malicious activity in the environment. Fidelis Endpoint also becomes a critical player in deception technology, as it can be deployed to various endpoints and used to trigger custom alerts.

Figure 17. Adaptive Data Returned, Based on DNS Cache Data

Actions		PID	Name	Path
Q Behavior Details	2K5I\Bruc	7596	mimikatz.exe	$\label{eq:c:UsersBruceWayneDownloads\minikatz_trunk\x64\minikatz.exe} C:\label{eq:c:UsersBruceWayneDownloads\minikatz_trunk\x64\minikatz.exe} C:\label{eq:c:UsersBruceWayne}$
🔅 Add Hash to Process Blocking	2K5I\Bruc	7956	mimikatz.exe	$\label{eq:c:UsersBruceWayneDownloads\minikatz_trunk\x64\minikatz.exe} C:\label{eq:c:UsersBruceWayneDownloads\minikatz_trunk\x64\minikatz.exe} C:\label{eq:c:UsersBruceWayne}$
💉 Create Yara Rule	2K5I\Bruc	7772	conhost.exe	C:\Windows\System32\conhost.exe
Start Task From Behavior				

Figure 18. Integrating Threat Intelligence Feeds

Provided in the *Threat Intelligence tab*, Fidelis Endpoint maintains a Scanning Indicator Library, a collection of indicators of compromise (IoCs) and Yara signatures that can subsequently be roped into Detections and Tasks. OpenIOC is also supported. As shown

in Figure 19, our instance came preloaded with multiple signatures.

Uploading your own signature and indicators is a simple two-click process. Those steps allowed us to craft and utilize custom signatures that may be

T Se	arch		± Import ↓ All 10C 14							
	Name O	Description	Source	Authored Date	Authored By	Category	Туре	Groups	Tags	
0:	njRAT Trojan	The Citizen Lab developed the original design of Psiphon, a censorship circ	IOC Bucket	03/15/14 01:05:10	@locbucket		IOC			
	Account Logon	Use_Case_6 (A user account was created)	Unknown	03/05/15 16:12:56	dhc\A566443		IOC			
	Agent.BTZ Campaign (SNAKE)	Extracted from BAE Systems and Gdata Security Labs: http://info.baesyste	IOC Bucket	03/08/14 21:44:19	HBGary		IOC			
	Alina point-of-sale Malware	This IOC detects the infection by several versions of the Alina point-of-sale	IOC Bucket	02/07/14 14:35:14	@locbucket		IOC			
	Andromeda Botnet	Andromeda is a modular bot. The original bot simply consists of a loader,	IOC Bucket	04/18/14 03:31:45	@locbucket		IOC			
	Antivirus Security Pro Ransomeware	The following binaries are identical copies of Ransomeware that pose as a	IOC Bucket	12/30/13 15:23:21	@iocbucket		IOC			
	Appendix E - APT1 File Hashes	MD5 Hashes from APT 1 malware	IOC Bucket	02/10/13 06:11:53	Mandiant		IOC			
	APT NGO WUACLT	This family of malware consists of backdoors that attempt to fetch encode	IOC Bucket	02/10/13 06:11:53	Mandiant		IOC			
	Asprox - Kuluoz Memory Only	IOC to detect the Asprox/Kuluoz trojan. This IOC relies on memory detectio	IOC Bucket	01/21/14 03:36:56	@herrcore		IOC			
	Asprox Botnet	This IOC detectes hosts infected with the Asprox Malware. In the past few	IOC Bucket	01/05/14 18:40:58	@locbucket		IOC			
	aumlib	http://www.fireeye.com/blog/technical/2013/08/survival-of-the-fittest-new_	IOC Bucket	11/27/13 19:38:38	Megan Carney		IOC			
	AURIGA (FAMILY)	The AURIGA malware family shares a large amount of functionality with th	IOC Bucket	02/10/13 06:11:53	Mandiant		IOC			
	Aurora Panda French Aerospace Att	Fireeye reported a strategic web compromise (SWC) activity on the website	IOC Bucket	07/09/14 22:30:59	@iocbucket		IOC			
	Autocad_Worm - ACAD/Medre.A	Based on the blog written by ESET	IOC Bucket	06/21/12 22:03:31	Christiaan Beek		IOC			
	Backdoor-c99shell	IOC to detect generic version of c99shell. Can be used by attackers for rem	IOC Bucket	05/16/12 07:49:33	Cedric PERNET		IOC			

Figure 19. Preloaded Signatures

unique to our environment. This represents another area where security teams can effectively protect their organization—by using signatures relevant to the activity they are observing. Signatures can subsequently be used to scan filesystem and in-memory objects, allowing for greater reach and visibility into the environment.

Conclusion

Enterprise security and defense are best done when organizations are able to monitor and analyze their entire environment as a *single—albeit complex—landscape*. Many organizations get stuck applying defense in a piecemeal fashion, rarely considering how the various pieces of a large organization communicate with one another constantly. This stance is likely handicapping your security team and preventing your organization from achieving a *truly effective and efficient defense*.

In this second and final product review of the Fidelis Elevate platform, we examined Fidelis Endpoint, the aptly named product that provides endpoint insight and response. We found that Fidelis Endpoint offers organizations a robust capability for gaining highlevel insights into the state of their various endpoints, while also offering drilldowns into key granular details that are crucial for effective detection and response.

Some of the key highlights from our review include:

- Behavioral monitoring and detections that track a *series of events*, as opposed to single events
- Enterprisewide threat hunting capabilities, allowing for mass collection and analysis of host-based artifacts
- Ease of response automation, allowing organizations to collect artifacts pertinent to an investigation before they have a chance to slip away
- Insight into the organization's applications

But perhaps our biggest highlight, across both papers, has been the ease with which Fidelis Elevate brings network and endpoints together. Our focus during this two-part review of Fidelis Elevate has been **holistic visibility**—treating all the pieces of your environment as a single entity; combining monitoring, detection and analysis into a single platform. Our testing showed that Fidelis Elevate was able to deliver on this focus, ultimately making the life of an analyst—and the job of defending an enterprise-level network—easier and more empowered. A platform such as Fidelis Elevate makes the job of securing a modern global enterprise significantly more achievable, truly making the lives of threat actors more difficult and organizations ultimately more secure.

About the Author

Matt Bromiley is a SANS digital forensics and incident response (IR) instructor, teaching FOR508: Advanced Incident Response, Threat Hunting, and Digital Forensics and SANS FOR572: Advanced Network Forensics: Threat Hunting, Analysis, and Incident Response. He is also an IR consultant at a global IR and forensic analysis company, combining experience in digital forensics, log analytics, and incident response and management. His skills include disk, database, memory and network forensics; incident management; threat intelligence and network security monitoring. Matt has worked with organizations of all shapes and sizes, from multinational conglomerates to small, regional shops. He is passionate about learning, teaching and working on open source tools.

Sponsor

SANS would like to thank this paper's sponsor:

