ABSTRACT
Translational research programs have been created to provide a better understanding of disease susceptibilities and pathway mechanisms. These programs require integration and analysis of multiple disparate data sets that come from different sources such as the hospital and pathology/molecular laboratories. At the NIH, a subset of the patients treated at the Clinical Center consent into various Institutes’ research protocols. Here we describe how NCI investigators utilize a centralized database system that 1.) securely stores, annotates, curates, and tracks information such as patient data, clinical phenotypes, biospecimen & derivatives data, and experimental research data, 2.) communicates clinical and research information with the NCI Clinical Data Registry and BTRIS systems, 3.) enables collaborative exchange and sharing of information amongst research groups, and 4.) provides an intuitive environment for investigators to query and review their collected data with minimal need for direct IT support.

BACKGROUND
When patients are admitted at the NIH, their demographics information, orders, results, participating protocols, and other clinical care information are stored in the Clinical Center’s central electronic medical record database, Clinical Research Information System (CRIS). NCI Center for Cancer Research (CCR) maintains its own separate Clinical Data Registry for patients who are enrolled in intramural NCI protocols. However, investigators traditionally have been “on their own” to capture, annotate, and store research information from consented, participating patients. As a result, many investigators managed clinical and research data in disparate information systems, often relying on spreadsheets and homegrown databases, which led to suboptimal retrieval and exchange of information that reduced the efficiency and effectiveness of translational medical research. Beginning in 2006, the Labmatrix software environment was introduced to CCR researchers with the following areas of emphasis and capabilities:

I. ACCESS & SECURITY
CCR’s Labmatrix system is a clinical research data management platform that supports intramural research endeavors. Centrally-hosted and maintained on-site behind NIH’s firewall, the system utilizes a web-browser thin-client/server model that allows for quick set up and management of users and groups based on laboratories, collaborations, research domains, and IRB protocols. While a set of central data resources are available to all Labmatrix users, a flexible security framework ensures private research data will only be accessible to designated group members and collaborators; furthermore, specific types of transactions against all data records (search, create, view, edit, delete) are configurable to ensure proper level of access. Individual’s access to Labmatrix is initially facilitated by the existing user authentication authority at the NIH (Active Directory); upon signing in, the user’s Labmatrix permissions are calculated via the individual’s user group(s) assignment. To prevent misuse and interception of PHI, PII, and private research data, all user interactions with the system are encrypted while in transmission. Additionally, data values are logged in pre/post-state details for audit & security forensics.
II. STANDARDIZATION & WORKFLOWS

Several key goals for the CCR Labmatrix system are to establish an informatics environment that facilitates data standardization, reduce data replication and divergence, encourage intramural collaborative participation, and prioritize re-use of existing informatics components. Commonly-used data domains in translational research, such as patient-centric information (e.g. contact details, demographics, phenotypes, genotypes, and familial relationships) and biospecimen-centric information (e.g. physical measurements, creation/derivation/tracking details, and physical storage assignments) are supported with Labmatrix’s built-in data forms, fields, and business logic. For research groups that want to capture information unique to their data workflows, custom data collection forms and relational data models can be created. In order to facilitate interoperability, ease-of-(re)use, and ease-of-maintenance, entities such as vocabulary terminologies, data sources, data forms, and workflows can be either shared or private resources in the system.

When a patient is enrolled and consented into a research protocol at the NCI, the investigating team can create a single reference “person” record in Labmatrix and auto-populate data from CRIS or from the NCI Clinical Data Repository; data for the person record are then shared with all Labmatrix users. Individual investigators can then assign the person into one or more studies with corresponding subject records. Protocol-specific data are entered into these access-controlled study records. Data access permissions can be configured to support multiple needs, such as collaboration between groups or transfer of data ownership. In addition to managing de-identified human and non-human subjects, the system also securely tracks and manages PHI/PII information from research subjects.

When a patient is enrolled and consented into a research protocol at the NCI, the investigating team can create a single reference “person” record in Labmatrix and auto-populate data from CRIS or from the NCI Clinical Data Repository; data for the person record are then shared with all Labmatrix users. Individual investigators can then assign the person into one or more studies with corresponding subject records. Protocol-specific data are entered into these access-controlled study records. Data access permissions can be configured to support multiple needs, such as collaboration between groups or transfer of data ownership. In addition to managing de-identified human and non-human subjects, the system also securely tracks and manages PHI/PII information from research subjects.

A critical feature of Labmatrix is its ability to manage the data & metadata associated with all stages and processes of a biospecimen’s usage life-cycle: textual & image information on the biospecimen itself, its donor subjects/sources, aliquot & derivative lineage, storage locations, chains of custody, process workflow assignments, and experimental results are all captured in a hierarchical relational model - so users can quickly retrieve relevant data, historical information, and accountability logs pertaining to a given biosample. Operationally, Labmatrix is utilized to facilitate common practices in biospecimen management, such as batch create/update/derivative functions, barcode labeling and storage assignments, inventory status tracking, current volume/mass, and physical transfer of custody.
III. INFORMATION RETRIEVAL
Traditionally, it has been difficult for investigators to query and obtain results for translational research because patient clinical information, biospecimen information, pathology information, molecular profile information, and other experimental data were kept in separate data repositories; even defining the correct linkage between data records from one repository to another can be very time-consuming (or even impossible) for research groups without dedicated IT support. With the deployment of Labmatrix, all types of data described above can be centrally federated/stored and accessed in a “one-stop shop” fashion. Utilizing the system’s graphical query user interface, investigators do not have to be trained in programmatic database languages in order to query across their data sets, hence receiving speedier data reports while freeing up IT resources. Query results can be exported in a variety of formats, while the queries themselves can be saved and shared. Furthermore, query parameters can be saved with static or dynamic values.

IV. PROGRAMMABILITY & MAINTENANCE
Labmatrix has a default web-browser user interface that presents different domain data in separate logical groups for ease of user consumption. This interface has been honed over multiple years of feedback from translational researchers. There are also alternative interfaces to access Labmatrix resources that adhere to the same system security rules. For example, Labmatrix’s Java API allows for programmatic access, so that designated IT personnel can develop and maintain custom projects, features, and user interfaces. Furthermore, with the “user scripting” and “extract-transform-load” (ETL) tools, advanced data workflows and complex data imports are possible. Exchange of information with other systems is supported by multiple connectivity options, working examples include NCI’s Clinical Data Repository and NIHCC’s BTRIS.

CONCLUSION
Labmatrix supports best practices in security, accountability, standardization, collaboration, efficiency, and data consumption for translational research. The implementation of CCR’s Labmatrix system provides a centralized, secure, integrated, and flexible informatics platform. NCI investigators utilize Labmatrix in their daily routines to store, review, manage, share, and explore clinical research data.