
Software-Defined Storage Explained
Nutanix Strategic Technology Paper

Software-defined Storage Explained

Control Plane, Data Plane, Decoupled Planes

In the world of networking, SDN initially meant the ability to decouple the control plane

(QoS, diagnostics, discovery) from the data plane. Nicira quickly realized that such a transition

could take a long time because southbound APIs and dumber Taiwan hardware will take years

to standardize. They were smart in moving over to VXLAN — or network virtualization — as their

new business mantra. VMware is confident it can sell this idea of a software-defined overlay a

whole lot better in the coming three years than try to boil the ocean by decoupling control

from data. Storage companies took this control-plane-data-plane jargon and coined the idea

of Software-defined Storage (SDS). No one, however, has spent time to explain what problem it

will solve for customers. Decoupling the control plane from the data plane is no more a means,

but an end in itself.

SDS Federated Storage

Federated storage as a concept has existed for at least two decades, if not more. Veritas

virtualized storage with a file system and a volume manager a generation ago. VMware VMFS

did the same thing a decade ago, and was hammered in the coming years for creating the

IO Blender problem. SANs were the new enemy of virtualization because accountability began

at the federated storage software, but ended at the underlying storage system. Finger pointing

ran amuck in federated storage for a good reason. Data Domain diskless gateways died a quiet

death because the gateway vendor and the array vendors played the game of hot potatoes

while a customer system was down. Acopia (now F5), OnStor (now defunct), and NetApp

V-series were fringe products because the control planes of individual systems were never

stitched together. For example, you could never take a simple snapshot that spanned two

arrays — there were no APIs to momentarily freeze multiple arrays for a consistent snapshot.

Federated storage continues to be a problem today. Without a distributed data fabric

(i.e., a clustered file system, or an industry-standard API for snapshots, clones, data protection,

etc.) large companies are dangerously playing with fire and customers’ emotions.

SDS: True North

SDS is more than marketing jargon. It is a profound concept, and we are only vaguely beginning

to understand what the true north for this term really is. Unlike the networking industry, where

systems from different vendors have communicated to form working fabrics, storage arrays

have been dispersed into silos for disparate workloads. Without truly understanding what

control plane commonly means across all array vendors, it is almost inane to apply the SDN

concepts to SDS verbatim. And honestly, we are only scratching the surface of SDS — with time

and customer experience, our grasp of this paradigm will grow.

© 2013 All Rights Reserved, Nutanix Corporation 1

http://blog.fosketts.net/series/the-io-blender/

As we see it now, here are the seven principles of SDS:

 1. Software-defined Controller: A storage controller must be provision-able via

 software orchestration. A new instance of a storage controller can be instantiated on

 a hypervisor just like one instantiates a virtual machine — on-demand, using APIs, or

 within a few mouse clicks. This is only possible if the controller does not run directly

 on bare metal, but rather on top of the hypervisor, which is now the de facto OS of

 the next-generation datacenter.

 2. Zero Hardware Crutch: A software-defined controller must not use any

 proprietary hardware. That means no dependence on special-purpose FPGA, ASIC,

 NVRAM, battery-backup, UPS, modem etc. Use dynamic HTTP-based tunnels instead

 of modems. Use inexpensive flash instead of ASIC or NVRAM. Use industry-standard

 PCIe pass through if you must bypass the hypervisor.

 3. x86-based Convergence: Storage as a datacenter service must run on the same

 hardware as the rest of the datacenter services. It can then share CPU, memory, and

 network with firewalls, WAN accelerators, load balancers, deep packet inspectors,

 and all other business applications.

 4. Virtual Hardware: With aforementioned x86-based hardware sharing, storage

 controllers can be provisioned virtual hardware resources — vCPU, vRAM, virtual

 ports, vSwitch QoS, etc. — at will. A storage vendor need not go back to “taping out”

 a new array with larger memory, faster CPUs, or faster networks. If a performance

 problem requires bumping up “hardware” for storage controllers, one can simply use

 the hypervisor knobs to configure faster storage. If offline compression needs to kick

 in at night when load on other services is low, compute resources can be dynamically

 passed on to the storage tier. And that is powerful!

 5. Factory-defined Nothing: No data management feature is factory-stitched. For

 example, it should be SDS heresy to ship dual controller arrays such that every

 workload gets HA. Perhaps non-persistent virtual desktops or test-and-dev VMs

 don’t require HA. Similarly, it’s heresy to ship an array with RAID-6 such that every

 workload gets erasure encoding. While read-mostly workloads embrace RAID-6,

 write-intensive workloads abhor them.

 6. Mechanism, Policy, and Late Binding*: A corollary of factory-defined nothingness

 is VM-aware Everything. Every data management service — snapshot, cloning,

 backup, DR, compression, dedup, performance QoS (and debugging), HA, RAID, etc.

 is defined at a VM-level. Factory ships with mechanism. Deployment worries about

 policies. Factory never hardcodes policies. And only that brings out the beauty of

 undifferentiated hardware, and software-based differentiation. On the same

 hardware, one could have some VMs with RAID-10, others with RAID-6, some

 with HA, some without HA, some with three copies of data, others with one, some

 with 15-min RPO, others with 1-hour RPO, and so on. This is the true essence of

 Cloud Computing — policies are late-bound at deployment, not early-bound in the

 factory. Policies are late-bound to software (virtual) constructs like VMs, not

 early-bound to hardware in the factory or to coarse-grained storage entities such

© 2013 All Rights Reserved, Nutanix Corporation 2

 as LUNs or volumes. This one virtue is the awesomeness of SDS; it’s preposterous to

 talk of software-defined anything without decoupling mechanism from policy, and

 without applying policies to virtual (software-based) constructs. Of course, to invoke

 mechanisms and to configure policies require next-generation RESTful APIs. The

 Virtual Hardware aspect of SDS is yet another example of late binding of resources

 to datacenter services.

 — * The separation of mechanism and policy was prevalent in operating systems  

  and programming languages research. For example, the Mach operating system, a  

  precursor to Windows NT, argued for microkernels by keeping mechanisms within  

  the OS and policies above the OS in user-space where other services run  

  (also refer this).

 7. Active Systems (Liveness): Storage up until now has been a passive bit keeper of

 data, a glorified byte shuttler between the network and the disk. In the past decade,

 vendors that did anything intelligent in the background, e.g., auto-tiering, were

 handsomely rewarded by customers. Hardware-based storage is passive. SDS is live

 and active. It is constantly reflecting on IO and data access patterns to create

 “system tasks” that move hot data closer to compute and cold data away from

 compute, that keep sequential workloads away from flash and random workloads

 journaled on flash, that compress or erasure-encode (RAID-6’ed) cold data offline,

 that pre-fetch and uncompress hot data in DRAM, that archive older snapshots into a

 WAN-based cloud, etc. How data lives and on what storage medium is yet another

 late-binding example. Policies are applied much later in the data lifecycle, not when

 I/O is passing the bits to the storage controller. SDS “wakes up” a sleepy storage tier,

 brings software to a world of hardware, and brings life to data. Active systems make

 data resemble a “plasma”, a fabric, a constantly shifting liquid of red, yellow, green,

 and blue.

SDS: True North

People confuse companies that shift hardware such as Nutanix as companies that cannot be

SDS. We adhere to every SDS principle I mention above, but integrate commodity hardware

in order to enable an iPhone-like datacenter experience. An all-software SDS inevitably turns

into a support nightmare when emotions run high during customer escalations. Attempting

to please everybody all the time by promising to run software on any and every hardware is

a fallacy. The converged infrastructure solutions success shows customer preference for a

single throat to choke versus the lack of accountability in a multi-vendor setup. The largest

enterprise software companies of our times — Oracle, VMware, and SAP — have constantly

had the SAN to blame whenever there was system slowness or data corruption. SDS

integrated with HCL hardware in the field is laissez faire route to storage, especially at a

time when hypervisor device drivers are not an open API-based plug-n-play ecosystem, and

when flash reliability is hugely variable. Imagine a SATA drive that is not hot-swappable, or a

failed drive that does not glow the red LED, or a SATA controller that silently loses data on

power loss.

We ship hardware because integrating it with software extremely late in the “factory”

makes common sense. We ship hardware because we need to own the problem first. We

ship hardware because we have to.

© 2013 All Rights Reserved, Nutanix Corporation 3

http://en.wikipedia.org/wiki/Separation_of_mechanism_and_policy
https://sites.google.com/site/mylokesh/policyvsmechanism

© 2013 All Rights Reserved, Nutanix Corporation 4

In Conclusion

SDS is a mandatory component of a software-defined datacenter (SDDC). Wikipedia

defines software-defined storage as “a marketing theme for promoting storage technologies”.

While this may be a natural conclusion based upon the large storage companies’ SDS positioning,

it does injustice to a promising shift in datacenter architectures. SDS results from separating

mechanism from policy and from late binding. These are the same concepts that encapsulate

the true meaning of software-defined anything, including the datacenter itself.

